Numerical Analysis of Molten Carbonate Fuel Cell Stack Using Computational Fluid Dynamics
نویسندگان
چکیده
منابع مشابه
Analysis for a Molten Carbonate Fuel Cell
In this paper we analyze a planar model for a molten carbonate electrode of a fuel cell. The model consists of two coupled second-order ordinary diierential equations, one for the concentration of the reactant gas and one for the potential. Restricting ourselves to the case of a positive reaction order in the Butler-Volmer equation, we consider existence, uniqueness, various monotonicity proper...
متن کاملMolten Carbonate Fuel Cell Modelling
Hybrid plants where a fuel cell and a gas turbine are combined have attracted the attention of the power system community. In this paper, a model is provided of a Molten Carbonate Fuel Cell stack and of the thermo-hydraulic equipment in which it is embedded. The model is worked out from basic physical considerations; however, it is also simple enough for simulation and control purposes. Besides...
متن کاملThree Dimensional Computational Fluid Dynamics Analysis of a Proton Exchange Membrane Fuel Cell
A full three-dimensional, single phase computational fluid dynamics model of a proton exchange membrane fuel cell (PEMFC) with both the gas distribution flow channels and the Membrane Electrode Assembly (MEA) has been developed. A single set of conservation equations which are valid for the flow channels, gas-diffusion electrodes, catalyst layers, and the membrane region are developed and numer...
متن کاملExergy Analysis of a Molten Carbonate Fuel Cell-Turbo Expander-Steam Turbine Hybrid Cycle
Exergy analysis of an integrated molten carbonate fuel cell-turbo expander-steam turbine hybrid cycle has been presented in this study. The proposed cycle has been used as a sustainable energy approach to provide a micro hybrid power plant with high exergy efficiency. To generate electricity by the mentioned system, an externally reformed molten carbonate fuel cell located upstream of the combi...
متن کاملMolten Carbonate Fuel Cells
Molten carbonate fuel cells use carbonate salts of alkali metals as electrolyte. Due to the highly corrosive nature of the electrolyte, various countermeasures are being developed. MCFCs are expected for high-efficiency power generation systems using hydrocarbon fuels, such as natural gas and coal gas. This article describes the mechanisms of operation and cell degradation, as well as the featu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Korean Electrochemical Society
سال: 2005
ISSN: 1229-1935
DOI: 10.5229/jkes.2005.8.4.155